الأحد، 23 فبراير 2014

الفيزياء النووية



الفيزياء النووية
النواة تحتوي على بروتونات ونيوترونات , حيث أن البروتونات جسيمات موجبة الشحنة وكتلة الواحد منها = 1.67252 × 10 -27  كجم أو 1.00727663 وحدة كتل ذرية ( و. ك. ذ ) ويرمز لها بالرمز (P) , اما النيوترونات فهي جسيمات غير مشحونة كتلة الواحد منها = 1.67482 × 10 -27  كجم أو 1.0086654 وحدة كتل ذرية (و.ك.ذ) ويرمز لها بالرمز (n) , ويسمى عدد البروتونات بالعدد الذري للعنصر ويكتب عادة يسار رمز العنصر من الاسفل أما مجموع عدد البروتونات والنيوترونات فيسمى عدد الكتلة ويكتب عادة يسار رمز العنصر إلى أعلى ومثال ذلك ذرة الحديد التي لها العدد الذري 26 وعدد الكتلة 56 أي يوجد داخل نواة الحديد 26 بروتون و 30 نيوترونات ( لاحظ أن عدد النيوترونات = عدد الكتلة – عدد البروتونات ) , وفي مثل هذه الحالة نرمز للحديد بالرمز 5626 Fe  , ولكن ماهي التحولات أو التغيرات الطبيعية التي يمكن أن تحدث للنواة وماهي الظروف التي تجعل مثل هذه التحولات تتم ؟
إن التغيرات الطبيعية التي يمكن أن تحدث للنواة هي واحد أو أكثر مما يلي :
1)   تحلل ألفا ( إشعاع ألفا ) وينتج عنه جسيمات ألفا (α) .
2)   تحول نيوترون إلى بروتون وينتج عنه (إشعاع بيتا السالب )(- β )
3)   تحول بروتون إلى نيوترون وينتج عنه( إشعاع بيتا الموجب ) (+ β )
4)    التقاط النواة للإلكترون القريب منها وينتج عنه ( إشعاع سيني )
5)   إصدار النواة المثارة لأشعة جاما (γ)
كما أن هناك تغيرا غير طبيعي يحدث بفعل الإنسان وهو انشطار النواة نتيجة قذفها بجسيم.
ولاشك أنك تسأل متى يحدث أي من هذه التحولات أو التغيرات داخل النواة ؟
فإليك نبذة مختصرة عن كل منها :
أولا : إشعاع ألفا α ( 42He++ )
إشعاع ألفا α وهو إشعاع استطاع رزرفورد أن يحرفه عن مساره باستخدام مجال مغناطيسي , وهو عبارة عن تيار من جسيمات موجبة الشحنة (أثقل من الإلكترون بحوالي 7000 مرة تقريبا ) .
وتبين من التجارب أن قدرة إشعاع ألفا على الاختراق (النفاذ) من خلال المواد ضغيفة فمثلا يمكن إيقاف إشعاع ألفا وامتصاصه بسهولة باستخدام  صفيحة رقيقة من الألمنيوم لا تزيد سماكتها على 0.5 ملم. كما تبين أن إشعاع ألفا يؤين ذرات الهواء عند مروره فيه .
وتمكن رذرفورد وتلاميذه إن يثبتوا أن إشعاع ألفا عبارة عن أيونات غاز الهليوم( 42He++ )
, أي أنه يحتوي على بروتونين و نيوترونين .
وقد لوحظ انبعاث جسيمات ألفا غالبا من النويات ذات العدد الكتلي الكبير . كما يحدث لنواة اليورانيوم 238 وكذلك نواة الراديوم .
س: ما مقدار التغير الذي يحدث لكل من عدد الكتلة والعدد الذري بالنسبة لنواة تشع جسيم ألفا ؟
س : ماذا يحدث لجسيمات ألفا (α) عند دخولها المجال الكهربائي أو المغناطيسي ؟

ثانيا : إشعاع بيتا (-β) 0-1e
إشعاع بيتا وتسمى أحيانا جسيمات بيتا السالبة (-β) وهي عبارة عن شحنات سالبة (إلكترونات ) . وقدرة نفاذ جسيمات بيتا أكبر (100مرة ) من قدرة نفاذ جسيمات ألفا حيث يلزم  صفيحة من الألمنيوم سماكتها 5 ملم لإيقاف معظم إشعاع جسيمات بيتا . وقد لوحظ أن النويات غيرالمستقرة نظرا لأن نسبة النيوترونات إلى البروتونات كبيرة تكون باعثة لجسيمات بيتا (-β) حيث يتحول نيوترون إلى بروتون و إلكترون ( الإلكترون يمثل جسيم (-β) الصادر من النواة ) ويؤدي هذا التحول إلى زيادة عدد البروتونات ( العدد الذري ) بمقدار واحد وثبات عدد الكتلة وهذا يعني أن إشعاع النواة لجسيم بيتا (-β) يجعلها تتحول من عنصر إلى عنصر آخر , ومن ذلك ما يحدث لنواة الثوريوم 234 حيث يتحول إلى عنصر البروتاكتينيوم نتيجة تحول نيوترون إلى بروتون حسب المعادلة النووية التالية :

23490TH                    0-1e  + 23491Pa                                 
أو ما يحدث للبروتا كتينوم (23491Pa) حيث يتحول إلى نظير اليورانيوم
23491Pa                          0-1e +23492U               

ثالثا : إشعاع بيتا (+β) 0-1e
إشعاع بيتا (+β) ويسمى أحيانا جسيمات بيتا الموجبة (+β)  وهي عبارة عن شحنات موجبة (بوزترونات) . حيث البوزترون جسيم  له كتلة الإلكترون وشحنة البروتون , وماذكر عن جسيمات (-β)  ينطبق على جسيمات (+β) إلا في تأثرها بالمجالين الكهربي و المغناطيسي حيث تنحر جسيمات (-β) في اتجاه مضاد للاتجاه الذي تنحرف فيه جسيمات (+β) . وقد لوحظ أن النويات التي تكون باعثة لجسيمات (+β) هي تلك التي يكون فيها عدد البروتونات كبيرا بالنسبة لعدد النيوترونات مما يجعلها غير مستقرة فيؤدي ذلك إلى تحول بروتون أو أكثرإلى نيوترون مما يجعل عدد البروتونات يقل ( العدد الذري ) مع بقاء عدد الكتلة ثابتا , وهذا يعني أن العنصر الذي يشع جسيمات (+β) يتحول إلى عنصر آخر , ويصاحب تحول البروتون إلى نيوترون إشعاع النواة لجسيم (+β) وهو عبارة عن جسيم يحمل شحنة البروتون الذي تحول إلى نيوترون , ومن أمثلة ذلك ما يحدث لنواة النيتروجين ( 147N ) وفق المعادلة التالية :
147N                                46C +01e               
وجدير بالذكر أن الأنوية التي يكون فيها عدد البروتونات كبير بالنسبة إلى عدد النيوترونات هي عناصر قليلة جدا .
س : بماذا تعلل كون انحراف جسيمات ألفا (α) بواسطة المجال الكهربائي أو المغناطيسي أصغر من انحراف جسيمات بيتا (β) ؟
رابعا : الالتقاط الإلكتروني ( الأسر الإلكتروني )
الالتقاط الالكتروني هو أن تقوم النواة بأسر (التقاط) إلكترون من مجال داخلي للذرة ويرافق هذه العملية انتقال إلكترون من مستوى الطاقة الخارجي إلى مستوى الطاقة الداخي للذرة , وهو المستوى الذي أسرت منه النواة الإلكترون ويؤدي هذا إلى تخلص الإلكترون من طاقة تساوي الفرق بين طاقتي المستويين الذين انتقل بينهما , وغالبا ما تكون كبيرة (لأن الإلكترون انتقل من مستوى خارجي إلى مستوى داخلي ) وتنبعث من هذه الطاقة على هيئة إشعاع سينى .
أما الإلكترون الذي التقطته النواة فإنه يتحد مع بروتون ويتحول البروتون إلى نيوترون أي أن العدد الذري للنواة ينقص بمقدار واحد بينما يظل عدد الكتلة ثابتا , وهذا يعني أن نواة العنصر التي يحدث لها أسر إلكتروني تتحول إلى نواة عنصر آخر كما يحدث لنواة البوتاسيوم ( K) 4019
4019 K + 0-1 e                 4018Ar + (x)
خامسا : أشعة جاما (γ)
إشعاع جاما (γ) عبارة عن أمواج كهرومغناطيسية ( لاتتأثر بالمجالين الكهربائي و المغناطيسي وتسير بسرعة الضوء ) طاقتها عالية جدا , مما يجعل لها قدرة نفاذ أكبر بكثير من قدرة نفاذ كل من جسيمات ألفا وجسيمات بيتا , ولذلك فهي تشكل خطرا على الكائنات الحية , إذ يستطيع إشعاع جاما اختراق جدار من الخرسانة سمكه 10 سم .
وقدرة أشعة جاما على تأيين الذرات التي تنفذ منها ضعيفة جدا , ويمكن لأي نواة مثارة أن تصدر أشعة جاما (γ) ولا يحدث عند ذلك أي تغيرفي عدد البروتونات أو النيوترونات ومثالا على ذلك نواة التكتينيوم المثارة :
9943 Te                   9943 Te + γ
ويرمز عادة للنواة المثارة بالرمز (Te ) وهو يعني أن النواة في حالة خاصة من الطاقة .
اكتشاف النيوترون :
إن اكتشاف النيوترون غير مفاهيم العلماء حول تركيب النواة , حيث كان يعتقد أن نواة الذرة تحتوي على عدد من البروتونات كتلتها تساوي الكتلة الذرية للعنصر , وعدد كاف من الإلكترونات لتحيط بها وتعادل شحنتها شحنة البروتونات , إلا أن مطياف الكتلة وضع أكثر من علامة استفهام حول ذلك الاعتقاد , حيث لاحظ العلماء أن مقدار الكتلة الذي يسجله مطياف الكتلة لأنوية العناصر يصل إلى ضعف كتلة هذه الأنوية ( أو أكثر ) التي نحصل عليه بطريقة حسابية ( على أساس أن كتلة مكونات النواة حسابيا = كتلة البروتون الواحد × العدد الذري للعنصر ) ولثقتهم بدقة حساباتهم وكذلك بدقة مطياف الكتلة فقد افترض العلماء وجود جسيمات متعادلة داخل النواة , بالإضافة إلى البروتونات.وتمكن بعد ذلك شادويك من إثبات وجودها عمليا . شادويك أجرى تجربته عام (1932م) واكتشف من خلالها النيوترون ومنح على ذلك جائزة نوبل .
وتتلخص تجربة شادويك أنه قام بقذف هدف من البيريليوم بجسيمات ألفا (α) ونتج عن ذلك جسيمات لها قدرة نفاذ عالية , إذا سلطت هذه الجسيمات بحيث تسقط على لوح من البرافين فإنها تسبب في جعله يطلق بروتونات بسرعة عالية , واستطاع شادويك أن يثبت أن الجسيمات المنطلقة من البيريليوم هي عبارة عن جسيمات غير مشحونة ( لا تتأثر بالمجال الكهربائي أو المغناطيسي ) , كتلتها تساوي كتلة البروتون تقريبا سماها النيوترونات .
وحيث أن النيوترون جسيم غير مشحون ( متعادل كهربائيا ) فهو يستخدم كقذيفة ممتازة لتحطيم النواة لأنه لا يتنافر معها , ولهذا السبب أيضا فإنه لا يسبب تأين المادة التي ينفذ من خلالها .
وجدير بالذكر أن استخدام لوح البرافين في تجربة شادويك كان لتبطئة سرعة النيوترونات المتحررة , حيث تم تصادم النيوترون بذرة الهيدروجين (بروتون) المساوية له في الكتلة فيسكن النيوترون ويتحرر البروتون ( تصادم مرن بين جسمين متساويين في الكتلة أحدهما ساكن ) .

ليست هناك تعليقات:

إرسال تعليق